Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
PLoS One ; 16(3): e0247686, 2021.
Article in English | MEDLINE | ID: covidwho-1574773

ABSTRACT

OBJECTIVES: The aim of this study was to investigate possible patterns of demand for chest imaging during the first wave of the SARS-CoV-2 pandemic and derive a decision aid for the allocation of resources in future pandemic challenges. MATERIALS AND METHODS: Time data of requests for patients with suspected or confirmed coronavirus disease 2019 (COVID-19) lung disease were analyzed between February 27th and May 27th 2020. A multinomial logistic regression model was used to evaluate differences in the number of requests between 3 time intervals (I1: 6am - 2pm, I2: 2pm - 10pm, I3: 10pm - 6am). A cosinor model was applied to investigate the demand per hour. Requests per day were compared to the number of regional COVID-19 cases. RESULTS: 551 COVID-19 related chest imagings (32.8% outpatients, 67.2% in-patients) of 243 patients were conducted (33.3% female, 66.7% male, mean age 60 ± 17 years). Most exams for outpatients were required during I2 (I1 vs. I2: odds ratio (OR) = 0.73, 95% confidence interval (CI) 0.62-0.86, p = 0.01; I2 vs. I3: OR = 1.24, 95% CI 1.04-1.48, p = 0.03) with an acrophase at 7:29 pm. Requests for in-patients decreased from I1 to I3 (I1 vs. I2: OR = 1.24, 95% CI 1.09-1.41, p = 0.01; I2 vs. I3: OR = 1.16, 95% CI 1.05-1.28, p = 0.01) with an acrophase at 12:51 pm. The number of requests per day for outpatients developed similarly to regional cases while demand for in-patients increased later and persisted longer. CONCLUSIONS: The demand for COVID-19 related chest imaging displayed distinct distribution patterns depending on the sector of patient care and point of time during the SARS-CoV-2 pandemic. These patterns should be considered in the allocation of resources in future pandemic challenges with similar disease characteristics.


Subject(s)
COVID-19/diagnostic imaging , Diagnostic Imaging/trends , Thorax/diagnostic imaging , Adult , Aged , COVID-19/epidemiology , Diagnostic Tests, Routine/trends , Female , Humans , Male , Middle Aged , Models, Theoretical , Pandemics , Pilot Projects , SARS-CoV-2/pathogenicity , Thorax/virology
2.
Arch Pathol Lab Med ; 145(7): 821-824, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1339693

ABSTRACT

CONTEXT.­: Coronavirus disease 2019 (COVID-19) changed the dynamics of health care delivery, shifting patient priorities and deferring care perceived as less urgent. Delayed or eliminated care may place patients at risk for adverse outcomes. OBJECTIVE.­: To identify opportunities for laboratory test stewardship to close potential gaps in care created by the COVID-19 pandemic. DESIGN.­: The study was a retrospective time series design examining laboratory services received before and during the COVID-19 pandemic at a large metropolitan health system serving women and children. RESULTS.­: Laboratory test volumes displayed 3 distinct patterns: (1) a decrease during state lockdown, followed by near-complete or complete recovery; (2) no change; and (3) a persistent decrease. Tests that diagnose or monitor chronic illness recovered only partially. For example, hemoglobin A1c initially declined 80% (from 2232 for April 2019 to 452 for April 2020), and there was a sustained 16% drop (28-day daily average 117 at August 30, 2019, to 98 at August 30, 2020) 4 months later. Blood lead dropped 39% (from 2158 for April 2019 to 1314 for April 2020) and remained 23% lower after 4 months. CONCLUSIONS.­: The pandemic has taken a toll on patients, practitioners, and health systems. Laboratory professionals have access to data that can provide insight into clinical practice and identify pandemic-related gaps in care. During the pandemic, the biggest patient threat is underuse, particularly among tests to manage chronic diseases and for traditionally underserved communities and people of color. A laboratory stewardship program, focused on peri-pandemic care, positions pathologists and other laboratory professionals as health care leaders with a commitment to appropriate, equitable, and efficient care.


Subject(s)
COVID-19/prevention & control , Clinical Laboratory Services/trends , Diagnostic Tests, Routine/trends , Health Care Rationing/trends , Health Services Accessibility/trends , COVID-19/diagnosis , Clinical Laboratory Services/organization & administration , Health Care Rationing/organization & administration , Health Policy , Health Services Accessibility/organization & administration , Humans , Retrospective Studies , Texas
3.
J Clin Microbiol ; 58(8)2020 Jul 23.
Article in English | MEDLINE | ID: covidwho-999214

ABSTRACT

In this commentary, we provide a broad overview of how the rapidly evolving coronavirus disease 2019 (COVID-19) diagnostic landscape has impacted clinical care during the COVID-19 pandemic. We review aspects of both molecular and serologic testing and discuss the logistical challenges faced with each. We also highlight the progress that has been made in the development and implementation of these assays as well as the need for ongoing improvement in diagnostic testing capabilities.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/trends , Diagnostic Tests, Routine/methods , Diagnostic Tests, Routine/trends , Humans , Pandemics , SARS-CoV-2
6.
Chembiochem ; 21(20): 2880-2889, 2020 10 15.
Article in English | MEDLINE | ID: covidwho-186292

ABSTRACT

Fast and widespread diagnosis is crucial to fighting against the outbreak of COVID-19. This work surveys the landscape of available and emerging biosensor technologies for COVID-19 testing. Molecular diagnostic assays based on quantitative reverse transcription polymerase chain reaction are used in most clinical laboratories. However, the COVID-19 pandemic has overwhelmed testing capacity and motivated the development of fast point-of-care tests and the adoption of isothermal DNA amplification. Antigenic and serological rapid tests based on lateral-flow immunoassays suffer from low sensitivity. Advanced digital systems enhance performance at the expense of speed and the need for large equipment. Emerging technologies, including CRISPR gene-editing tools, benefit from high sensitivity and specificity of molecular diagnostics and the easy use of lateral-flow assays. DNA sequencing and sample pooling strategies are highlighted to bring out the full capacity of the available biosensor technologies and accelerate mass testing.


Subject(s)
Betacoronavirus , Biosensing Techniques/methods , Coronavirus Infections/diagnosis , Diagnostic Tests, Routine/methods , Pneumonia, Viral/diagnosis , Biosensing Techniques/trends , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Diagnostic Tests, Routine/trends , Humans , Immunoassay/methods , Pandemics , Real-Time Polymerase Chain Reaction , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL